As you may recall, an equation whose graph is a straight line is called a linear function. A linear function has an equation that can be written in the form of \(y = mx + b \). Equations whose graphs are not straight lines are called **nonlinear functions**. Some nonlinear functions have specific names. A **quadratic function** is nonlinear and has an equation in the form of \(y = ax^2 + bx + c \), where \(a \neq 0 \). Another nonlinear function is a **cubic function**. A cubic function has an equation in the form of \(y = ax^3 + bx^2 + cx + d \), where \(a \neq 0 \).

Function Equation Graph

<table>
<thead>
<tr>
<th>Function</th>
<th>Equation</th>
<th>Graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>(y = mx + b)</td>
<td>![Graph of a linear function]</td>
</tr>
<tr>
<td>Quadratic</td>
<td>(y = ax^2 + bx + c), (a \neq 0)</td>
<td>![Graph of a quadratic function]</td>
</tr>
<tr>
<td>Cubic</td>
<td>(y = ax^3 + bx^2 + cx + d), (a \neq 0)</td>
<td>![Graph of a cubic function]</td>
</tr>
</tbody>
</table>

Examples

Determine whether the function is linear or nonlinear.

- **a.** \(y = 4x \)
 - Linear, \(y = 4x \) can be written as \(y = mx + b \).

- **b.** \(y = x^2 + x - 2 \)
 - Nonlinear, \(y = x^2 + x - 2 \) cannot be written as \(y = mx + b \).

- **c.** \(y = \frac{7}{x} \)
 - Nonlinear, \(y = \frac{7}{x} \) cannot be written as \(y = mx + b \).

Practice

Determine whether the function is linear or nonlinear.

1. \(y = 5 \)
2. \(2x + 3y = 10 \)
3. \(y = 7x^2 \)
4. \(xy = -13 \)

5. **Standardized Test Practice** Select the nonlinear function.
 - **A** \(y = -3x - 5 \)
 - **B** \(y = 0.75 \)
 - **C** \(y = 3x^2 \)
 - **D** \(y = \frac{1}{2}x + 2 \)