

1. 
Identify the conic section with equation 8y^{2} + 2x  8y  10 = 0. 


A. 
parabola 
B. 
circle 


C. 
ellipse 
D. 
hyperbola 


Hint 


2. 
Find the rectangular equation of the curve whose parametric equations are x = 4 cos t and y = 4 sin t, where . 


A. 
x^{2} + y^{2} = 16 
B. 
x^{2}  y^{2} = 4 


C. 
x^{2} + y^{2} = 4 
D. 
x^{2}  y^{2} = 16 


Hint 


3. 
Identify the conic section with equation 4(x + 4) ^{2}  3(y + 3) ^{2} = 12. 


A. 
parabola 
B. 
circle 


C. 
ellipse 
D. 
hyperbola 


Hint 


4. 
Find the rectangular equation of the curve whose parametric equations are y = 2t^{2} + 4 and x = 4t, where and identify the conic section. 


A. 
ellipse 


B. 
parabola 


C. 
8y = x^{2}  32; ellipse 


D. 
8y = x^{2}  4; parabola 


Hint 


5. 
Identify the conic section with equation y^{2} = x + 2y  16. 


A. 
parabola 
B. 
ellipse 


C. 
hyperbola 
D. 
circle 


Hint 

