1.   The cost of producing an item is $5 per item plus an initial cost of $2000. The selling price is $10 per item. Find the break-even point.
    A. 4000 items B. 4500 items
    C. 400 items D. 450 items
    Hint

  2.   Solve the system of equations y = 0.5x and 4y = x - 2 by graphing.
    A. B.
    C. D.
    Hint

  3.   Solve the system of equations by substitution.

x = z
x - 2y + z = 6
2x + y - 2z = 1

What is the value of x + y + z?
    A. 8 B. 10
    C. 9 D. 11
    Hint

  4.   Find the value of .
    A. -17 B. 17
    C. -3 D. 3
    Hint

  5.   Solve the system of inequalities by graphing.
   
    A.
    B.
    C.
    D.
    Hint

  6.   Find the maximum value of f(x, y) = 2x + y - 2 for the polygonal convex set determined by the system of inequalities.
   
    A.      6 B.      18
    C.      12 D.      14
    Hint

  7.   Solve the system of three equations by elimination:

5x + 2y - 3z = 10
2x - 2y + 4z = 6
x - y + 2z = 3

    A. (2, -5, 3) B. infinite solutions
    C. (3, 4, 2) D. no solution
    Hint

  8.  
    A. B.
    C. impossible D.
    Hint

  9.  
    A. B. impossible
    C. D.
    Hint

  10.   A quadrilateral with vertices A(-2,-3), B(-4,2), C(-2,4) and D(0,2) is translated 5 units to the right and 3 units down. What are the new coordinates?
    A. A(-5,2), B(-7, 7), C(-5, 9), D(-3, 7)
    B. A(3,0), B(-1,5), C(3,7), D(5,5)
    C. A(3,-6), B(1,-1), C(3,1), D(5,-1)
    D. A(3,-6), B(1,-1), C(3,7), D(5,5)
    Hint

  11.   Use matrices to determine the coordinates of the image of
with vertices A(-3,4), B(-5,2) and C(-6,5) once it is rotated 90.
    A. A'(-3,-4), B(-5,-2) and C'(-6,-5)
    B. A'(-4,-3), B(-2,-5) and C'(-5,-6)
    C. A'(3,4), B(5,2) and C'(6,5)
    D. A'(3,-4), B(5,-2) and C'(6,-5)
    Hint

  12.   Find the inverse of .
    A. B.
    C. D.
    Hint

  13.   Find the maximum value of f(x, y) = 2x + y - 4 for the system of inequalities:
y -3x + 1
y x - 4
x 0
y 0
    A. infeasible B. 2
    C. alternate optimal solutions D. unbounded
    Hint

  14.   Sam has $10,000 to deposit in two different savings accounts. He wants at least $3,000 in the account that earns 3% interest. He wants no less than $5,000 in the account with 7% interest. Write a system of inequalities to represent this situation.
    A. x 3000
y 5000
x + y 10,000
B. x 3000
y 5000
x + y 10,000
    C. x 5000
y 3000
x + y 10,000
D. x 3000
y 5000
x + y 10,000
    Hint