1. Ten years ago, Mary invested \$2500. Four years later, she invested \$3000. Set up an equation that determines the current value of the two investments T(x) if each earns 10% annual interest per year. A. T(x) = 2500(1.1)10 + 3000(1.1)4 B. T(x) = 3000(1.0)10 + 2500(1.1)6 C. T(x) = 2500(1.1)10 + 3000(1.1)6 D. T(x) = 3000(1.0)10 + 2500(1.1)4 Hint 2. Find the roots of the equation x4 - 3x2 - 4 = 0. A. 2i, -2i, 1, -1 B. i, -i, 1, -1 C. i, -i, 2, -2 D. 2i, -2i, 2, -2 Hint 3. The roots of the equation x2 - 8x - 20 = 0 are ____. A. -2 and 10 B. 2 and 10 C. -2 and -10 D. 2 and -10 Hint 4. The equation x2 + x - 1 = 0 cannot be solved by ____. A. graphing B. using the quadratic formula C. completing the square D. factoring Hint 5. Divide x4 + 2x2 - 1 by x - 1 using synthetic division. The result of synthetic division is ____. A. 1 3 1 3 | 2 B. 1 3 1 3 | -2 C. 1 1 3 3 | 2 D. 1 1 3 3 | -2 Hint 6. Find the value of k so that the remainder of (x3 - 3x2 + kx - 6) ÷ (x + 2) is 0. A. k = 6 B. k = 11 C. k = -11 D. k = -13 Hint 7. List the possible rational roots of 3x3 + 5x2 - 2x + 1 = 0. A. 1, B. , C. , D. 1, Hint 8. Find the number of positive real zeros for f(x) = 3x5 + 2x3 + x2 + 7x - 1 = 0. A. 4 or 2 positive real zeros B. no positive real zeros C. 4 or 2 or 0 positive real zeros D. exactly 1 positive real zero Hint 9. Approximate the real zero(s) of f(x) = x3 - 2x2 + 5x - 5 to the nearest tenth. A. 1.4 B. 1.6 C. 1.4, 2.1, and 3.2 D. 1.2 Hint 10. Approximate the real zeros of the function f(x) = 2x2 + 4x + 1 to the nearest tenth. A. -1.6 and -0.2 B. -1.8 and -0.2 C. -1.8 and -0.4 D. -1.7 and -0.3 Hint 11. Solve + < . A. a < 0 or a > 5 B. 0 < a < 5 C. a < 0 or 0 < a < 5 D. a > 0 or 0 < a < 5 Hint 12. Solve - x + 1 = 0. A. -1, -2 B. -1, 2 C. 1, 2 D. 1, -2 Hint 13. Solve . A. 5 B. 2 C. 5, 1 D. 5, 2 Hint 14. Solve . A. 3 B. 2 C. 0 D. 1 Hint 15. How many direction changes are there in the graph of a linear equation? A. 3 B. 2 C. 1 D. 0 Hint 16. How many direction changes are there in the graph of a quartic function? A. 2 B. 3 C. 0 D. 1 Hint