1.   Given f(x) = x2 + 1 and g(x) = 2x - 1, find (f - g)(x).
    A. x2 - 2x + 1 B. x2 - 2x - 1
    C. x2 + 2x D. x2 - 2x + 2
    Hint

  2.   What are the vertices of the triangle formed?
   
    A. (100, 400), (500, 400), and (100, 800)
    B. (100, 400), (400, 500), and (100, 800)
    C. (100, 400), (500, 400), and (800, 100)
    D. (100, 400), (400, 500), and (800, 100)
    Hint

  3.   If you use the parent graph y = as a reference, how would you
graph y = - 3?
    A. Move the parent graph to the left 3 units. B. Move the parent graph down 3 units.
    C. Move the parent graph to the right 3 units. D. Move the parent graph up 3 units.
    Hint

  4.   Determine the interval(s) on which the function f(x) = 2|x + 1| + 3 is increasing and the interval(s) on which the function is decreasing.
    A. The function is decreasing for x > 0, and the function is
increasing for x < 0.
    B. The function is increasing for x > -1, and the function is
decreasing for x < -1.
    C. The function is increasing for x > 3, and the function is
decreasing for x < 3.
    D. The function is increasing for x > 2, and the function is
decreasing for x < 2.
    Hint

  5.   Use the parent graph f(x) = to graph the function
k(x) = ; identify the new location of each asymptote.
    A. y = 5 B. y = 2
    C. x = 5 D. x = 2
    Hint

  6.   Use the Remainder Theorem to find the remainder for the division of
(x4 - 3x2 + 2x - 1) (x - 1). The remainder is ____.
    A. 2 B. 0
    C. -1 D. 1
    Hint

  7.   Solve > 0.
    A. -2 < x < 0 or x < 1 B. -1 < x < 0 or x > 1
    C. -1 < x < 0 or x > 2 D. -2 < x < 0 or x > 2
    Hint

  8.   If the angle -1500° is in standard position, state the quadrant
in which its terminal side lies.
    A. III B. I
    C. IV D. II
    Hint

  9.   In Hero's Formula, to find the area of a triangle, s in the formula
represents ______.
    A. none of these B. the perimeter of the triangle
    C. the sum of any two of the three sides of the triangle D. the semiperimeter of the triangle
    Hint

  10.   State the amplitude, period, phase shift, and vertical shift for
y = 3 cos - 4.
    A. 4; 8; -2; -3 B. 3; 8; -2; -4
    C. 3; 8; -2; 4 D. 4; 8; 2; 3
    Hint

  11.   Find Cos-1 .
    A. -1 B. 0
    C. D. 1
    Hint

  12.   If csc = 2, find sin .
    A. B.
    C. D. 2
    Hint

  13.   Solve sin x cos x - cos x = 0 for principal values of x. Express solutions in degrees.
    A. 150°, 90° B. 30°, 90°
    C. 60°, 90° D. 30°, 60°
    Hint

  14.   Solve sin2 x - sin x + 1 = cos2 x for 0 x < 2.
    A. 0, , , B. 0, ,
    C. 0, , , D. 0, , ,
    Hint

  15.   What is the distance between the lines with equations x + y - 5 = 0 and
y = -x + 10?
    A. B.
    C. D.
    Hint

  16.   Find the inverse of .
    A. 0 B.
    C. D. does not exist
    Hint

  17.   Complete the graph so it is symmetric about the origin.
   
    A. B.
    C. D.
    Hint

  18.   Which is the graph of y > (x - 3)2?
    A. B.
    C. D.
    Hint

  19.   Use the sum or difference identity for tangent to find the exact value of tan 165°.
    A. - 2 B. 1
    C. - D.
    Hint

  20.   Write the standard form of the equation of a line for which the length of the normal segment to the origin is 19 and the normal makes an angle of 150° with the positive x-axis.
    A. x + y - 19 = 0
    B. x - y + 38 = 0
    C. x - y + 19 = 0
    D. x + y - 38 = 0
    Hint