

1. 
The number 64 is divisible by which of the following? 


A. 
3 
B. 
6 


C. 
4 
D. 
5 


Hint 


2. 
Express 130,254 in expanded form. 


A. 
(1 × 10^{5}) + (30 × 10^{4}) + (2 × 10^{2}) + (5 × 10^{1}) + (4 × 10^{0}) 


B. 
(1 × 10^{5}) + (3 × 10^{4}) + (2 × 10^{2}) + (5 × 10^{1}) + (4 × 10^{0}) 


C. 
(1 × 10^{6}) + (3 × 10^{5}) + (2 × 10^{3}) + (5 × 10^{2}) + (4 × 10^{1}) 


D. 
(1 × 10^{5}) + (3 × 10^{4}) + (2 × 10^{3}) + (5 × 10^{2}) + (4 × 10^{1}) 


Hint 


3. 
Write in simple form. 


A. 

B. 



C. 

D. 



Hint 


4. 
Express the ratio 12gh:30h^{2}g in simplest form. 


A. 

B. 



C. 

D. 



Hint 


5. 
Write a^{2}b^{3} using positive exponents. 


A. 

B. 



C. 

D. 



Hint 


6. 
The number 462 is divisible by which of the following? 


A. 
6 
B. 
None of these 


C. 
5 
D. 
10 


Hint 


7. 
Evaluate 7(a – b)^{3} if a = 3 and b = 1. 


A. 
28 
B. 
42 


C. 
56 
D. 
8 


Hint 


8. 
Write the prime factorization of 756. 


A. 
2^{3} · 3^{3} · 7 
B. 
2^{2} · 3 · 63 


C. 
2^{2} · 3^{3} · 7 
D. 
2 · 3^{5} · 7 


Hint 


9. 
Factor –15x^{2}. 


A. 
1 · 3 · 5 · x · x 
B. 
1 · 3 · 5 · x^{2} 


C. 
3 · 5 · x · x 
D. 
3 · 5 · x^{2} 


Hint 


10. 
Factor 15x^{3}  5x^{2}. 


A. 
5x(3x^{2}  x) 
B. 
x(15x^{2}  5x) 


C. 
5x^{2} (3x – 1) 
D. 
x^{2} (15x – 5) 


Hint 


11. 
The area of a rectangle can be written by the expression 24x^{4}+ 18x^{3}. Find a set of possible dimensions for this rectangle. 


A. 
2x^{4}by 12 + 9x 


B. 
6x^{3} by 4x + 3 


C. 
3 by 8x^{3} + 6x^{3} 


D. 
24x^{3} by x + 18 


Hint 


12. 
Find (14b^{5})(1b^{6}). 


A. 
14b^{30} 
B. 
14b^{11} 


C. 
14b^{30} 
D. 
14b^{11} 


Hint 


13. 
Find 


A. 
1^{8} 
B. 
1^{3} 


C. 
x^{8} 
D. 
x^{3} 


Hint 


14. 
Write the expression m^{7} using a positive exponent. 


A. 

B. 
m^{7} 


C. 

D. 
m^{7} 


Hint 


15. 
Express 2.629 × 10^{7} in standard form. 


A. 
0.0000002629 
B. 
2,629,000 


C. 
26,290,000 
D. 
2,629 


Hint 


16. 
Express 1,000,000 in scientific notation. 


A. 
1 × 10^{5} 
B. 
1 × 10^{6} 


C. 
1 × 10^{7} 
D. 
1 × 10^{6} 


Hint 


