1. The cost of producing an item is \$5 per item plus an initial cost of \$2000. The selling price is \$10 per item. Find the break-even point. A. 4500 items B. 4000 items C. 450 items D. 400 items Hint 2. Solve the system of equations y = 0.5x and 4y = x - 2 by graphing. A. B. C. D. Hint 3. If you solve the following system of equations by elimination, which of the following is the best choice for the first step?2x + y - z = 3x + y + z = 5x - 2y + z = 2 A. Both methods will work. B. Add the first and second equations to eliminate the z variable. C. Neither method will work. D. Subtract the second and third equation to eliminate the z variable. Hint 4. Solve the system of equations by substitution.x = zx - 2y + z = 62x + y - 2z = 1What is the value of x + y + z? A. 10 B. 8 C. 11 D. 9 Hint 5. A. B. C. D. Hint 6. Find the image of after Rot90 · Ry-axis if the vertices areA(2, -3), B(6, -3), and C(2, 5). A. A'(3, -2), B'(3, -6), C'(-5, -2) B. A'(3, 2), B'(3, 6), C'(5, -2) C. A'(-3, -2), B'(-3, -6), C'(-5, -2) D. A'(-3, 2), B'(-3, 6), C'(5, 2) Hint 7. Which of the following is a graph of the inequalities l + g > 100 and l > 70? A. B. C. D. Hint 8. Use the function P(x, y) = 40x + 60y to determine how many of each item should be produced in order to maximize profit. A. (300, 500) B. (100, 800) C. (100, 400) D. (500, 400) Hint 9. A. impossible B. C. D. Hint 10. Use matrices to determine the coordinates of the image of with vertices A(-3,4), B(-5,2) and C(-6,5) once it is rotated 90°. A. A'(3,-4), B(5,-2) and C'(6,-5) B. A'(3,4), B(5,2) and C'(6,5) C. A'(-4,-3), B(-2,-5) and C'(-5,-6) D. A'(-3,-4), B(-5,-2) and C'(-6,-5) Hint 11. Find the inverse of . A. 0 B. does not exist C. D. Hint 12. Find the inverse of . A. B. C. D. Hint 13. Solve the system of inequalities by graphing.x + y 42x - y < 4y 0 A. B. C. D. Hint 14. Find the maximum value of f(x, y) = 2x + y - 4 for the system of inequalities:y -3x + 1y x - 4x 0y 0 A. 2 B. unbounded C. alternate optimal solutions D. infeasible Hint